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Abstract. The equation of motion for the p-polarization field in a wurtzite GaN/AlN multilayer het-
erostructure is solved for the quasi-confined-optical-phonon modes based on the dielectric-continuum model
and Loudon’s uniaxial crystal model. The polarization eigenvector, the dispersion relation of the quasi-
confined-optical-phonon modes and the electron-quasi-confined-phonon interaction Fröhlich-like Hamil-
tonian are derived. The analytical formulas can be directly applied to single/multiple quantum wells
(QW’s) and superlattices. The electron-quasi-confined-phonon coupling functions are investigated for a
given AlN/GaN/AlN single QW with full account of the strains of the QW structures and the anisotropy
effect of wurtzite crystals. We find that there are two kinds of quasi-confined-optical-phonon modes in the
GaN/AlN QW’s: the GaN-layer quasi-confined-optical-phonon modes and the AlN-layer quasi-confined-
optical-phonon modes. There are infinite quasi-confined-optical-phonon branches, labelled by a quantum
number n (n = 1, 2, . . .), with definite symmetry with respect to the center of the AlN/GaN/AlN single
QW for a given phonon wave number q⊥. The dispersions of the quasi-confined-optical-phonon modes with
smaller n are more obvious than the ones with larger n. Moreover, the modes with smaller n are much more
important for their electron-quasi-confined-phonon interactions than those with larger n. In most cases, it
is enough to consider the modes with n ≤ 8 for the electron-quasi-confined-phonon interactions in a single
GaN/AlN QW. The higher frequency modes are more significant than the lower ones. The long-wavelength
quasi-confined-optical-phonon modes are much more important for the electron-quasi-confined-phonon in-
teractions. The GaN-layer quasi-confined-optical-phonon energies and their electron-quasi-confined-phonon
interaction strength are markedly increased due to the strains of the QW structures. The influence of the
strains on the the AlN-layer electron-quasi-confined-phonon interactions can be ignored.

PACS. 78.67.De Quantum wells – 63.20.Dj Phonon states and bands, normal modes, and phonon
dispersion – 63.20.Kr Phonon-electron and phonon-phonon interactions – 63.22.+m Phonons
or vibrational states in low-dimensional structures and nanoscale materials

1 Introduction

In the past decade, the investigation of the optical, elec-
tronic, and lattice dynamical properties of quantum het-
erostructures based on the hexagonal wurtzite group-III
nitrides InN, GaN, AlN and their ternary compounds
with direct wide-band-gaps in the region of 1.9 ∼ 6.2 eV
has been highly developed due to their promising poten-
tial for optoelectronic device applications, particularly for
high-brightness blue/green light emitting diodes (LED’s)
and laser diodes (LD’s) [1–14]. The quantum heterostruc-
tures, which are composed of the different III-V nitrides,
naturally form quantum wells (QW’s) of the electron or
hole along the [0001] direction (c axis) of wurtzite crystal
due to the different optical bandgaps of the constituents
(please refer to Figs. 5 and 41 of Ref. [3]). The interests and
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scope of research in this field are increasing day after day.
The group-III nitrides usually crystallize in wurtzite struc-
ture. Their phonon spectra are much more complex due to
anisotropy of the crystal structure compared with phonons
in cubic crystals [15–22]. It has been known that, at room
and higher temperatures, the electron-phonon interactions
and scattering play an important role for various proper-
ties of polar semiconductor quantum heterostructures, in-
cluding hot-electron relaxation rates, interband transition
rates, room-temperature exciton lifetimes, and many other
optical and transport properties. Hence the understand-
ing of lattice dynamics and electron-phonon interactions
in wurtzite quantum heterostructures has attracted much
attention.

In recent years, some optoelectronic devices com-
posed of the strained GaN/AlN quantum heterostruc-
tures, such as photoconductive detectors, photodiodes,
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field effect transistors, LED’s and LD’s, have been real-
ized [2,3,6]. The strained GaN/AlN quantum heterostruc-
tures thus become a very active research object. Based on
the dielectric-continuum (DC) model [15] and Loudon’s
uniaxial crystal model [23,24], the polar optical-phonons
in wurtzite GaN/AlN single heterojunctions, single QW’s,
and infinite superlattices (SL’s) have been examined
theoretically in references [12–14]. The electron-optical-
phonon scattering in wurtzite crystals and single QW’s
was investigated in references [25,26]. The polaron prop-
erties of III-V nitride compounds were studied in refer-
ences [27–29]. The polar optical-phonons and their inter-
actions with electrons in GaN/AlN quantum dots (QD’s)
were also treated in references [30–32]. Angular dispersion
of polar phonons and Raman scattering due to extraordi-
nary phonons in wurtzite GaN/AlN SL’s were investigated
in references [33,34]. The experimental results of refer-
ences [33,34] were found to be in good agreement with the
calculations based on the DC model, which confirmed the
accuracy of the DC model for the description of the lattice
dynamic properties of wurtzite QW’s and SL’s. The LO
phonon-assisted luminescence of the shallow donor-bound
excitons and free excitons in the GaN films was also inves-
tigated at different temperatures [35]. With Raman scat-
tering, Bergman et al. [36] investigated phonon lifetimes
in wurtzite AlN and GaN; Alexson et al. [37] further stud-
ied the confined phonons and the phonon-mode properties
of wurtzite III-V nitrides.

It is well known that there are two kinds of important
optical-phonon modes in a bulk wurtzite crystal [23,24].
One is the so-called ordinary phonons. Their polariza-
tion modes are purely transverse modes (s-polarization
modes). They are not accompanied by the appearance
either of a surface polarization charge or a bulk one.
Hence the electron does not couple to the s-polarization
modes [15]. We will not discuss them in this paper.
The other is the extraordinary phonons (p-polarization
modes), for which the orientation of the electric field−→
E and the polarization vector

−→
P with respect to the

phonon wave vector −→q = (−→q ⊥, qz) and the c axis is
more complicated. Here the subscripts ⊥ and z denote the
perpendicular-direction and the parallel-direction of the z
(c) axis. Generally, the p-polarization modes can give rise
to a surface polarization charge in a wurtzite quantum het-
erostructure and will be discussed in detail in the present
paper.

Recently, Shi [9–11] solved the p-polarized interface-
optical-phonon modes and the propagating-optical-
phonon modes in an arbitrary wurtzite quasi-two-
dimensional (Q2 D) multilayer heterostructure based on
the DC model [15] and Loudon’s uniaxial crystal model
[23,24]. Five distinct types of optical phonon modes
have been confirmed. The quasi-confined-optical-phonon
modes, the propagating-optical-phonon modes, the
interface-optical-phonon modes, the half-space-optical-
phonon modes and the exactly-confined-optical-phonon
modes, were found to coexist in a wurtzite Q2D multilayer
heterostructure. The Fröhlich-like Hamiltonian due to the
electron interactions with the interface-optical-phonon

and propagating-optical-phonon modes in wurtzite Q2D
multiple quantum wells (MQW’s) or SL’s have also been
derived and discussed in references [9–11]. To the best of
our knowledge, the properties of the other three modes
have not been fully understood up to now. The purpose
of the present paper is to solve the quasi-confined-
optical-phonon modes and to derive the electron-quasi-
confined-phonon interaction Fröhlich-like Hamiltonian in
a wurtzite Q2D GaN/AlN multilayer heterostructure.

The paper is organized as follows. In Section 2, the
equation of motion for the p-polarization field in an arbi-
trary wurtzite Q2D multilayer heterostructure is solved.
The polarization eigenvector and the dispersion relation
of the quasi-confined-optical-phonon modes are given.
In Section 3, the electron-quasi-confined-phonon interac-
tion Fröhlich-like Hamiltonian are derived. In Section 4,
the dispersion relations and the electron-quasi-confined-
phonon coupling functions are calculated numerically and
discussed for a chosen AlN/GaN/AlN single QW. Finally,
the main conclusions obtained in this paper are summa-
rized in Section 5.

2 Quasi-confined-optical-phonon modes
in a wurtzite GaN/AlN multilayer
heterostructure

Let us now consider an arbitrary wurtzite Q2D GaN/AlN
multilayer heterostructure with the AlN layer labelled by
j = 0, 2, 4, . . . , N + 1 and the GaN layer denoted by
j = 1, 3, 5, . . . , N . The j = 0 and N + 1 layers are semi-
infinite in thickness. The heterointerfaces are located at
z = z0, z1, . . . , zN with the z axis along the [0001] direc-
tion of wurtzite crystal. Following a procedure analogous
to that of reference [9], the general solutions of the p-
polarization fields can be obtained.

According to the different values of qz,j, we have
two types of quasi-confined-optical-phonon modes: the
GaN-layer quasi-confined-optical-phonon modes with
the phonon wave number qz purely real (imaginary) in
the GaN (AlN) layer and the AlN-layer quasi-confined-
optical-phonon modes with the phonon wave number qz

purely real (imaginary) in the AlN (GaN) layer.

2.1 GaN-layer quasi-confined-optical-phonon modes

According to the equations (2.14) and (2.19) of refer-
ence [9], the GaN-layer quasi-confined-optical-phonon so-
lutions (j = 1, 3, 5, . . . , N) can be written as

P
(j)
⊥ (z) = C

[
Aje

iqz,j(z−zj) + Bje
−iqz,j(z−zj)

]
,

P (j)
z (z) = γjC

[
Aje

iqz,j(z−zj) − Bje
−iqz,j(z−zj)

]
. (1)

Here qz,j is purely real. On the contrary, qz,j becomes imag-
inary in the AlN layers (j = 0, 2, 4, . . . , N + 1) and can
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be substituted by iqz,j. We thus have the quasi-confined-
optical-phonon solutions in the AlN layers as follows

P
(j)
⊥ (z) = C

[
Aje

−qz,j(z−zj) + Bje
qz,j(z−zj)

]
,

P (j)
z (z) = iγjC

[
Aje

−qz,j(z−zj) − Bje
qz,j(z−zj)

]
. (2)

In equations (1) and (2), C is a constant determined by
equation (16), and γj is defined as

γj ≡ qz,jχz,j(ω)
q⊥χ⊥,j(ω)

. (3)

Here χ is the lattice susceptibility. Using the electrostatic
boundary conditions, i.e., equations (2.16) and (2.17) of
reference [9] at the z = zj interface, we have the following
matrix relation relating the successive coefficients Aj+1

and Bj+1:
(

Aj+1

Bj+1

)
= Mj

(
Aj

Bj

)
, j = 0, 1, . . . , N, (4)

where A0 = 0 and BN+1 = 0 in the AlN layer. The transfer
matrix Mj from the layer j to the layer j + 1 is defined as

Mj =
βj,j+1

2

(
σ−e−qz,j+1dj+1 σ+e−qz,j+1dj+1

σ+eqz,j+1dj+1 σ−eqz,j+1dj+1

)
,

(j = 1, 3, 5, . . . , N). (5)

The corresponding result for j = 0, 2, 4, . . . , N − 1 is

Mj =
βj,j+1

2

(
σ+eiqz,j+1dj+1 σ−eiqz,j+1dj+1

σ−e−iqz,j+1dj+1 σ+e−iqz,j+1dj+1

)
, (6)

where dj+1 ≡ zj+1 − zj is the thickness of the layer j + 1,
and σ± is given by

σ± = 1 ± iαj,j+1. (7)

Here αj,j+1 and βj,j+1 are defined as

αj,j+1 ≡ qz,jεz,j(ω)
qz,j+1εz,j+1(ω)

,

βj,j+1 ≡ χ⊥,j+1(ω)
χ⊥,j(ω)

, (8)

where ε is the lattice dielectric function. Moreover, the
matrix relation relating the coefficients in the j = 0 layer
and the j = N + 1 layer can be written as

(
AN+1

0

)
= Mtot

(
0

B0

)
, (9)

with

Mtot =
(

M11 M12

M21 M22

)
= MNMN−1 · · ·M0. (10)

We can obtain from equation (9) the following dis-
persion relation for the GaN-layer quasi-confined-optical-
phonon modes in a wurtzite Q2D GaN/AlN multilayer
heterostructure:

M22 = 0. (11)

This equation is the most general expression of the GaN-
layer quasi-confined-optical-phonon dispersion relation for
a wurtzite Q2D GaN/AlN multilayer system.

As an important special case of Q2D GaN/AlN mul-
tilayer heterostructures, let us now further discuss equa-
tion (11) for an AlN/GaN/AlN single QW. For conve-
nience, we will use index 1 for the QW material GaN and
index 2 for the surrounding material AlN. We can obtain
from equation (11) the following dispersion relation for
the GaN-layer quasi-confined-optical-phonon modes,

qz,1d = arc tan


2

(√
κ(0)
κ(1)

−
√

κ(1)
κ(0)

)−1

+ nπ,

n = 1, 2, 3, . . . , (12)

where

qz,1 =

√∣∣∣∣
ε⊥,1(ω)
εz,1(ω)

∣∣∣∣q⊥, (q⊥ > 0), (13)

and

κ(m) = |ε⊥,mεz,m| =

∣∣∣∣∣ε
∞
⊥,m

ω2 − ω2
⊥,Lm

ω2 − ω2
⊥,Tm

ε∞z,m

ω2 − ω2
z,Lm

ω2 − ω2
z,Tm

∣∣∣∣∣ .

(14)

Here d is the thickness of GaN layer, ε∞ denotes the op-
tical dielectric constant, ω⊥,L and ωz,L (ω⊥,T and ωz,T )
are the zone center LO (TO) phonon frequencies, and n
is a quantum number for the nth quasi-confined-optical-
phonon mode in the GaN layer. Generally, equation (12)
has an infinite number of solutions with definite symmetry
with respect to the symmetric center of the QW structure
for a given phonon wave number q⊥ (see Figs. 2 and 3).
Moreover, we can prove that equation (12) is equivalent
to equations (20) and (21) of reference [14].

According to equations (1) and (2), we can obtain the
two-dimensional p-polarization eigenvector −→π (q⊥, z) ≡
(P⊥, Pz) for the GaN-layer quasi-confined-optical-phonon
modes as

−→π (q⊥, z) = C





Q1, z < z0,

Q2,GaN, zj−1 < z < zj, j = 1, 3 . . . , N,

Q2,AlN, zj−1 < z < zj,

j = 2, 4 . . . , N − 1,

Q3, z > zN.

(15)

Q1 (q⊥, z) = eqz,0(z−z0) [1,−iγ0] ,

Q2,GaN (q⊥, z) =
[(

Aje
iqz,j(z−zj) + Bje

−iqz,j(z−zj)
)

,

γj

(
Aje

iqz,j(z−zj) − Bje
−iqz,j(z−zj)

)]
,

Q2,AlN (q⊥, z) =
[(

Aje
−qz,j(z−zj) + Bje

qz,j(z−zj)
)

,

iγj

(
Aje

−qz,j(z−zj) − Bje
qz,j(z−zj)

)]
,

Q3 (q⊥, z) = AN+1e
−qz,N+1(z−zN) [1, iγN+1] .
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The coefficient C in equation (15) can be determined by
the orthonormality condition, i.e., equation (2.37) of ref-
erence [9], as follows:

C =

√
1
Λ

, (16)

with

Λ = Q0,+/(2qz,0) +
N∑

j=1,3,5···
{(|Aj |2 + |Bj |2)djQj,+

+ [A∗
jBji(1 − e2iqz,jdj)/(2qz,j)

− AjB
∗
j i(1 − e−2iqz,jdj)/(2qz,j)]Qj,−}

+
N−1∑

j=2,4,6···
{[|Aj |2(e2qz,jdj − 1)

+ |Bj |2(1−e−2qz,jdj)]Qj,+/(2qz,j)+(A∗
jBj + AjB

∗
j )djQj,−}

+ |AN+1|2QN+1,+/(2qz,N+1). (17)

Here A∗
j and B∗

j are the complex conjugates of Aj and Bj ,
and Qj,± is defined as

Qj,± ≡ η⊥,j(ω)
ω2
⊥,pj

± γ2
j

ηz,j(ω)
ω2

z,pj

.

The definitions of ηj(ω) and ωpj are given in reference [19].

2.2 AlN-layer quasi-confined-optical-phonon modes

Similar to Section 2.1, the solutions of the AlN-layer quasi-
confined-optical-phonon modes (j = 0, 2, 4, . . . , N +1) are
as follows:

P
(j)
⊥ (z) = C′

[
Aje

iqz,j(z−zj) + Bje
−iqz,j(z−zj)

]
,

P (j)
z (z) = γjC

′
[
Aje

iqz,j(z−zj) − Bje
−iqz,j(z−zj)

]
. (18)

The corresponding solutions in the GaN layers (j = 1, 3, 5,
. . . , N) can be written as

P
(j)
⊥ (z) = C′

[
Aje

−qz,j(z−zj) + Bje
qz,j(z−zj)

]
,

P (j)
z (z) = iγjC

′
[
Aje

−qz,j(z−zj) − Bje
qz,j(z−zj)

]
. (19)

The transfer matrix Mj for j = 1, 3, 5, . . . , N is
given by

Mj =
βj,j+1

2

(
σ+eiqz,j+1dj+1 σ−eiqz,j+1dj+1

σ−e−iqz,j+1dj+1 σ+e−iqz,j+1dj+1

)
. (20)

The corresponding result for j = 0, 2, 4, . . . , N − 1 can be
written as

Mj =
βj,j+1

2

(
σ−e−qz,j+1dj+1 σ+e−qz,j+1dj+1

σ+eqz,j+1dj+1 σ−eqz,j+1dj+1

)
. (21)

For simplicity, let us now consider a symmetric wurtzite
GaN/AlN Q2D multilayer heterostructure with the same
thickness d for the GaN and AlN layers embedded in the
two semi-infinite AlN layers. We can easily find that there
are two types of the AlN-layer quasi-confined-optical-pho-
non modes: the symmetric and antisymmetric modes with
respect to the center of the whole structure, i.e., the center
of the layer m ≡ (N + 1)/2. According to reference [13],
the following relationships between the coefficients Aj and
Bj in the j = 0 (j = m) layer can be found,

A0 = (−1)sB0e
−iqz,0Nd,

Am = (−1)sBme−qz,md, (22)

where s = 0 (s = 1) is for the symmetric (antisymmetric)
modes.

Based on the electrostatic boundary conditions, we
have the following relation,

(
Am

Bm

)
= M ′

tot

(
A0

B0

)
, (23)

where

M
′
tot =

(
M

′
11 M

′
12

M
′
21 M

′
22

)
= M N−1

2
M N−3

2
· · ·M0. (24)

Furthermore, we can derive the following dispersion re-
lation for the AlN-layer quasi-confined-optical-phonon
modes from equations (22) and (23),

e−qz,md−iqz,0NdM
′
21 − M

′
12 =

(−1)s
[
e−iqz,0NdM

′
11 − e−qz,mdM

′
22

]
. (25)

This equation is the most general expression of the AlN-
layer quasi-confined-optical-phonon dispersion relation for
our symmetric wurtzite GaN/AlN Q2D multilayer sys-
tem. For an AlN/GaN/AlN single QW, we can derive
the following dispersion relation for the AlN-layer quasi-
confined-optical-phonon modes from equation (25),

qz,2d/2+arctan
[
(−1)m1+1ν(m1, m2) tanh(qz,1d/2)

]
= nπ.

n = 1, 2, 3, . . . (26)

Here the index 1 is for the QW material GaN and index 2
for the surrounding material AlN, and n is a quantum
number for the nth quasi-confined-optical-phonon mode
in the AlN layer. In equation (26), m1 = 1, m2 = 2 (m1 =
2, m2 = 1) is for the symmetric (antisymmetric) modes
and ν(m1, m2) is defined as,

ν(m1, m2) =
εz,m1qz,m1

εz,m2qz,m2

. (27)

Equation (26) has an infinite number of phonon mode so-
lutions with definite symmetry with respect to the sym-
metric center of the QW structure for a given phonon wave
number q⊥ (please refer to Figs. 5 and 6).

From equations (18) and (19), we can ob-
tain the two-dimensional p-polarization eigenvector
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−→π (q⊥, z) ≡ (P⊥, Pz) for the AlN-layer quasi-confined-
optical-phonon modes as follows:

−→π = C′





Q1, z < z0,

Q2,GaN, zj−1 < z < zj, j = 1, 3 . . . , N,

Q2,AlN, zj−1 < z < zj, j = 2, 4 . . . , N − 1,

Q3, z > zN.

(28)

Here Q1, Q2,AlN and Q3 have the identical forms as func-
tions of the wave number q⊥ and the coordinate z. The
functions Q1(q⊥, z) and Q2,GaN(q⊥, z) are defined as

Q1 (q⊥, z) =
[(

Aje
iqz,j(z−zj) + Bje

−iqz,j(z−zj)
)

,

γj

(
Aje

iqz,j(z−zj) − Bje
−iqz,j(z−zj)

)]
,

Q2,GaN (q⊥, z) =
[(

Aje
−qz,j(z−zj) + Bje

qz,j(z−zj)
)

,

−iγj

(
−Aje

−qz,j(z−zj) + Bje
qz,j(z−zj)

)]
. (29)

The coefficient C′ in equation (28) can be deter-
mined by the orthonormality condition of the eigenvector−→π (q⊥, z) as follows:

C′ =

√
1
Λ′ , (30)

where Λ′ is defined as

Λ′ = (|B0|2+1)(z0+L)Q0,++
B∗

0

2iqz,o
[1−e−2iqz,0(L+Z0)]Q0,−

− B0

2iqz,o
[1−e2iqz,0(L+Z0)]Q0,++

N∑
j=1,3,5···

{[|Aj |2(e2qz,jdj −1)

+ |Bj |2(1 − e−2qz,jdj )]Qj,+/(2qz,j) + 2AjBjdjQj,−}

+
N−1∑

j=2,4,6...

{(|Aj |2 + |Bj |2)djQj,+

+ A∗
jBji(1 − e2iqz,jdj)/(2qz,j)

− AjB
∗
j i(1 − e−2iqz,jdj)/(2qz,j)}

+ (|AN+1|2 + |BN+1|2)(L − zN )QN+1,+

+
AN+1B

∗
N+1

2iqz,N+1
[e−2iqz,N+1(L−ZN ) − 1]QN+1,−

− A∗
N+1BN+1

2iqz,N+1
[e2iqz,N+1(L−ZN ) − 1]QN+1,+.

(31)

Here 2L denotes the total length of the wurtzite Q2D mul-
tilayer heterostructure along the z-direction (c axis) with
L � (zN − z0).

3 Electron-quasi-confined-phonon interactions
in a wurtzite multilayer heterostructure

The Fröhlich-like Hamiltonian He−ph due to the electron-
quasi-confined-phonon interactions can be obtained by

quantizing the energy of interaction of an electron at
the position −→r with the scalar potential produced by
the phonons, i.e., −eφ(−→r ) (please refer to Refs. [15,38]).
For the two kinds of quasi-confined-optical-phonon modes
given in Section 2, we can obtain their electron phonon in-
teraction Hamiltonian in an arbitrary wurtzite Q2D GaN/
AlN multilayer heterostructure as follows:

He−ph =
∑
n

∑
−→q ⊥

[ân(−→q ⊥)Γn(q⊥, z)ei−→q ⊥·−→ρ

+ â†
n(
−→q ⊥)Γ ∗

n (q⊥, z)e−i−→q ⊥·−→ρ ]. (32)

We can use the absolute value of the electron-quasi-
confined-phonon coupling function Γn(q⊥, z) to describe
the coupling strength of a single electron located at the po-
sition z with the nth quasi-confined-optical-phonon mode.

Based on reference [15] and Section 2, the coupling
function Γn(q⊥, z) between an electron and the GaN-layer
quasi-confined-phonons in an arbitrary wurtzite Q2D
GaN/ AlN multilayer heterostructure can be derived as
follows:

Γn(q⊥, z) = C

(
�e2

8Aε0ωn(q⊥)

)1/2

×





f1(q⊥, z), z < z0,

f2,GaN(q⊥, z), zj−1 < z < zj, j = 1, 3, . . . , N,

f2,AlN(q⊥, z), zj−1 < z < zj, j = 2, 4, . . . , N − 1,

f3(q⊥, z), z > zN,

(33)

where A is the cross-sectional area of the heterostructure,
and ε0 is the absolute dielectric constant. The normal fre-
quency ωn(q⊥) of the nth branch of the quasi-confined-
optical-phonon modes in the GaN layers can be obtained
by solving the dispersion relation equation (11) numeri-
cally. The expressions of fi(q⊥, z) (i = 1, 2, 3) are given in
Appendix A.

The electron-phonon coupling function due to the AlN-
layer quasi-confined-optical-phonon modes in a symmet-
ric wurtzite GaN/AlN Q2D multilayer heterostructure can
also be obtained, which has an expression similar to equa-
tion (33). Please refer to Appendix B.

The analytical expressions given in Section 3 for the
electron-quasi-confined-phonon coupling function in an ar-
bitrary wurtzite GaN/AlN Q2D multilayer heterostruc-
ture are universal, and can be directly applied to many im-
portant Q2D multilayer systems, such as single/multiple
QW’s and SL’s. Moreover, our results are also useful for
further investigation of the optical properties and polaron
effects of the commonly used GaN-based devices, such as
LED’s and LD’s.

4 Numerical results and discussion

In Sections 2 and 3, we have derived the dispersion
equations and the polarization eigenvectors of the quasi-
confined-optical-phonon modes in the GaN and AlN lay-
ers, and their electron phonon interaction Fröhlich-like
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Fig. 1. Dispersion curves of the GaN-layer quasi-confined-optical-phonon modes for a symmetric AlN/GaN/AlN single QW
with the GaN well layer thickness of d = 5 nm. The numbers next to the curves represent the quantum number n. Here (a) is
for the higher frequency modes, (b) for the lower frequency modes, and the strains of the QW structure are included.

Hamiltonian in a general wurtzite GaN/AlN Q2D mul-
tilayer heterostructure. However, the corresponding an-
alytical formulas are complicated. In order to see be-
haviors of the quasi-confined-optical-phonon modes and
their interactions with electrons more clearly, we have
calculated the quasi-confined-optical-phonon dispersions
and their electron-quasi-confined-phonon coupling func-
tions for a symmetric AlN/GaN/AlN single QW. The ma-
terial parameters used in our calculations are the same as
in reference [9].

4.1 GaN-layer quasi-confined-optical-phonon modes
and their electron-quasi-confined-phonon interactions

Considering the strains of the QW structure, the dis-
persion of the GaN-layer quasi-confined-optical-phonon
modes in a symmetric AlN/GaN/AlN single QW is shown
in Figure 1. We can see from Figure 1 that the GaN-layer
quasi-confined-optical-phonon modes exist in the two re-
gions: higher frequency modes between the GaN A1(LO)
and E1(LO) frequencies, and the lower frequency modes
within the region of the GaN A1(TO) and E1(TO) fre-
quencies. Furthermore, we can see from Figure 1 that there
are infinite quasi-confined-optical-phonon branches with
definite symmetry with respect to the middle plane of the
QW for a given phonon wave number q⊥ in each range
(please refer to Figs. 2 and 3). These branches are denoted
by a quantum number n (n = 1, 2, . . . ,∞). Figure 1 also
shows that the dispersion of the GaN-layer quasi-confined-

optical-phonon modes with smaller n is more dispersive
than the modes with larger n. When n goes to infinity, the
value of �ω⊥T1 = 73.22 (92.08) meV is obtained as a limit
in the lower (higher) frequency domain. If q⊥ → ∞, the
higher and lower frequency quasi-confined-optical-phonon
branches approach the E1(LO) and A1(TO) frequencies
of GaN material, respectively. Moreover, our calculations
also show that, if ignoring the strain of the GaN layer, the
dispersion behavior of the quasi-confined-optical-phonon
modes is similar to Figure 1. Generally, the strains of
the GaN layer will increase the frequency of the quasi-
confined-optical-phonon modes.

Figures 2 and 3 show the spatial (z) dependence of the
GaN-layer electron-quasi-confined-phonon coupling func-
tion Γ (q⊥, z) for the same symmetric single QW structure
as in Figure 1. Our calculations indicate that, in most
cases, the electron-quasi-confined-phonon interactions are
important only for the modes with the small quantum
number (n = 1, 2, . . . , 8), and can be ignored for the other
modes with the large quantum number. We will thus pay
attention to the GaN-layer lower and higher frequency
quasi-confined-optical-phonon modes with the quantum
number n = 1, 2, 3, 4. The results for the n ≥ 5 modes are
similar to those for the n = 1, 2, 3, 4 modes and are not
shown. Figure 2 indicates that the electron-quasi-confined-
phonon interactions with the lower frequency modes are
basically localized in the GaN well layer and in the vicinity
of the interfaces. Figure 3 shows that the electron-quasi-
confined-phonon interactions with the higher frequency
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layer are considered.
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modes are mainly in the GaN well layer. Moreover, we
can see from Figures 2 and 3 that the interaction inten-
sity between an electron and the higher frequency modes
is one order of magnitude larger than that between an
electron and the lower frequency modes.

Figures 2 and 3 clearly show that the GaN-
layer electron-quasi-confined-phonon coupling function
Γ (q⊥, z) has exact symmetry with respect to the center
of the QW structure at z = 2.5 nm for a given quasi-
confined-optical-phonon mode. We can see from Figure 2
that the real part of Γ (q⊥, z) is antisymmetric (symmet-
ric) with respect to the center of the QW structure for the
n = 1, 3, . . . (n = 2, 4, . . .) lower frequency modes. On the
contrary, the real part of Γ (q⊥, z) is symmetric (antisym-
metric) for the n = 1, 3, . . . (n = 2, 4, . . .) higher frequency
modes (please refer to Fig. 3). For the GaN-layer quasi-
confined-optical-phonon modes, our calculations indicate
that the imaginary part of Γ (q⊥, z) is zero. Figure 2 also
indicates that in the lower frequency domain the electron-
quasi-confined-phonon interactions have oscillation (expo-
nential attenuation) behavior in the GaN (AlN) layer.
With increasing of the quantum number n, the oscilla-
tion period of the electron-quasi-confined-phonon coupling
function |Γ (q⊥, z)| is reduced for a given q⊥.

Furthermore, we can see from Figure 2 that the
strength of the GaN-layer electron-quasi-confined-phonon
interactions increase evidently and the oscillation period
of the electron-quasi-confined-phonon coupling function
Γ (q⊥, z) is not influenced for a given q⊥ if the strains
of the QW structure are included. Our calculations also
show that the influence of the strains of the QW struc-
ture on the the GaN-layer electron-quasi-confined-phonon
coupling function can be ignored for the higher frequency
modes.

Figure 4 shows the absolute values |Γ (q⊥, z)| as a func-
tion of wave number q⊥ for the same QW structure as in
Figure 1. According to Figures 2 and 3, we choose the
z = 0 nm for the lower frequency modes, and z = 2 nm
for the higher frequency modes. We can see from Figure 4
that |Γ (q⊥, z)| is a complicated function of q⊥. Moreover,
Figure 4 also indicates that the long-wavelength quasi-
confined-optical-phonon modes are much more important
for the electron-quasi-confined-phonon interactions than
the short-wavelength ones.

4.2 AlN-layer quasi-confined-optical-phonon modes
and their electron-quasi-confined-phonon interactions

Our calculations show that the dispersion behavior of the
AlN-layer quasi-confined-optical-phonon modes is similar
to that of the GaN-layer quasi-confined-optical-phonon
modes. The influence of the strains of the GaN QW layer
on the dispersion characteristics of the AlN-layer quasi-
confined-optical-phonon modes can be ignored.

Figures 5 and 6 indicate the spatial (z) depen-
dence of the coupling function Γ (q⊥, z) due to
the interaction between an electron and the AlN-
layer quasi-confined-optical-phonon modes for the
AlN(100 nm)/GaN(5 nm)/AlN(100 nm) symmetric single
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as a function of q⊥ for the same QW structure as in Figure 1.
Here (a) and (b) are for the lower and higher frequency modes
of the strained QW structure, respectively.

QW. For simplicity, we will only consider the n = 1, 2, 3, 4
modes. We can see from Figures 5 and 6 that Γ (q⊥, z)
has exact symmetry with respect to the center of the
QW structure at z = 2.5 nm for a given quasi-confined-
optical-phonon mode. Both the real and imaginary parts
of Γ (q⊥, z) are symmetric for the n = 1, 3, . . . modes, and
antisymmetric for the other modes with n = 2, 4, . . . The
coupling function Γ (q⊥, z) has the oscillation behavior in
the AlN layers. The oscillation period is reduced with the
increase of the quantum number n. Furthermore, com-
pared with the real (imaginary) part, the imaginary (real)
part is so small that we can ignore its contribution to
the |Γ (q⊥, z)| for the AlN-layer lower (higher) frequency
quasi-confined-optical-phonon modes.

Figures 7 and 8 show the absolute values of Γ (q⊥, z)
for the AlN-layer quasi-confined-optical-phonon modes.
Our calculations indicate that the electron-quasi-confined-
phonon interactions are important for the modes with
small quantum number (n = 1, 2 . . . , 8) and can be ne-
glected for all the other modes. For clarity, we will limit
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our attention to the modes with the quantum number n =
1, 2, 3, 4. We can see from Figures 7 and 8 that the strength
of the electron-quasi-confined-phonon interactions is re-
duced with the increase of the quantum number. More-
over, the electron-quasi-confined-phonon interactions for
the n = 1, 3, . . . symmetric modes are important in both
the GaN well layer and the AlN barrier layer. On the con-
trary, the n = 2, 4, . . . antisymmetric modes are signifi-
cant only in the AlN barrier layer. Generally, the electron-
phonon interactions due to the higher-frequency modes
are much more important than those due to the lower-
frequency modes.

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

q⊥d

Γ
 

(m
eV

 n
m

)1/
2

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

q⊥d

Γ
 

(m
eV

 n
m

)1/
2

1 

2 
3 

4 

Lower frequency
      modes    

z=0 nm 

1 

2 

3 
4 

Higher frequency
         modes  

z=0 nm 

(a) 

(b) 

Fig. 9. Absolute values |Γ (q⊥, z)| divided by (�e2/8Aε0)
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as a function of q⊥ for the same QW structure as in Figure 5.
Here (a) is for the lower frequency modes, and (b) for the higher
frequency modes.

In Figure 9, we show the absolute values |Γ (q⊥, z)|
as a function of wave number q⊥ for the same QW
structure as in Figure 5. Figure 9 indicates that the
long-wavelength AlN-layer quasi-confined-optical-phonon
modes are much more important for their electron-quasi-
confined-phonon interactions than the short-wavelength
ones. Moreover, we can also see from Figure 9 that the
electron-quasi-confined-phonon interactions in the higher
frequency range are stronger than those in the lower fre-
quency range.

5 Conclusions

Within the framework of the DC model and Loudon’s
uniaxial crystal model, we have solved the quasi-confined-
optical-phonon modes in a wurtzite Q2D GaN/AlN
multilayer heterostructure with an arbitrary number of
layers. The p-polarization eigenvector, the dispersion re-
lation and the electron-quasi-confined-phonon interaction
Fröhlich-like Hamiltonian are derived using the transfer-
matrix method. Our analytical formulas are universal, and
can be directly applied to single/multiple QW’s and SL’s
composed of group-III nitrides. For an AlN/GaN/AlN
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symmetric single QW, our calculations show that there are
infinite quasi-confined-optical-phonon branches, denoted
by a quantum number n (n = 1, 2, . . .), with exact symme-
try with respect to the center of the QW. The dispersions
of the quasi-confined-optical-phonon modes with smaller
quantum number n are more significant than for larger
n. Moreover, the modes with smaller n are much more
important for the electron-quasi-confined-phonon interac-
tions. Generally, it is enough to take into account the
modes with n = 1, 2, . . . , 8. The long-wavelength modes
are much more important for the electron-quasi-confined-
phonon interactions. The electron-phonon interactions
due to the higher-frequency modes are much larger than
those due to the lower-frequency modes. The oscillation
period of the electron phonon coupling function Γ (q⊥, z)
is reduced with the increase of the quantum number n.
Furthermore, the strain effects of the QW structure have
an obvious influence on the dispersions of the GaN-layer
quasi-confined-optical-phonon modes and their electron-
quasi-confined-phonon interactions. The strength of the
GaN-layer electron-quasi-confined-phonon interactions for
the lower frequency modes is obviously enhanced due to
the strains of the QW structures. The influence of the
strains of the QW structure can be neglected for the higher
frequency modes. The influence of the strains of the QW
structure on the AlN-layer quasi-confined-optical-phonon
dispersion and their electron-quasi-confined-phonon inter-
actions can also be ignored. These conclusions are impor-
tant and useful for further experimental and theoretical
investigations of the optical properties and the polaron
effects, and for device applications based on the quantum
heterostructures of group III nitrides.

This work was supported by the National Natural Science
Foundation of China under Grant Nos. 60276004 and 60390073,
and by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry of China.

Appendix A: Electron phonon coupling
function for the GaN-layer
quasi-confined-optical-phonon modes

For simplicity, we introduce two accessorial functions as
follows,

ζ±,j ≡ 1±γj
q⊥±qz,j

,

ζ
(i)
±,j ≡ 1±iγj

q⊥±iqz,j
, (A.1)

and

τ±,±(x, y, j) = e±q⊥(x−zj−1) − e±qz,j(y−zj−1),

τ
(i)
±,±(x, y, j) = e±q⊥(x−zj−1) − e±iqz,j(y−zj−1). (A.2)

They have the following characteristics,

τ
(i)
+,−(z0, z0, 1) = 0,

τ−,+(∞, zj , j + 1) = −1.

The function fi(q⊥, z) (i = 1, 2, 3) in equation (33) can be
written as

f1(q⊥, z) = −ζ+,0

[
τ+,+(z0, z, 1) − 1

]

+ζ−,0τ+,+(z, z, 1)

+
N∑

j=1,3,5···

{[
− A∗

jζ
(i)
+,jτ

(i)
−,+(zj , zj, j)

−B∗
j ζ

(i)
−,jτ

(i)
−,−(zj, zj , j)

][
1 + τ+,+(z, zj−1, j)

]}

+
N−1∑

j=2,4,6···

{[
− A∗

jζ+,jτ−,+(zj , zj, j)

+B∗
j ζ−,jτ−,−(zj, zj , j)

][
1 + τ+,+(z, zj−1, j)

]}

+A∗
N+1ζ+,N+1

[
τ+,+(z, zN , N + 1) + 1

]
, (A.3)

f2,GaN(q⊥, z) = ζ+,0

[
τ−,+(z, z0, 1) + 1

]

+
j−2∑

m=1,3,5···

{[
A∗

mζ
(i)
−,mτ

(i)
+,+(zm, zm, m)

+B∗
mζ

(i)
+,mτ

(i)
+,−(zm, zm, m)

][
1 + τ

(i)
−,+(z, zm−1, m)

]}

+
j−1∑

m=2,4,6···

{[
A∗

mζ−,mτ+,+(zm, zm, m)

+B∗
mζ+,mτ+,−(zm, zm, m)

][
1 + τ−,+(z, zm−1, m)

]}

+
[
A∗

j ζ
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−,jτ

(i)
+,+(z, z, j)

+B∗
j ζ

(i)
+,jτ

(i)
+,−(z, z, j)

][
τ

(i)
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+
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m=j+1,j+3···
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+B∗
mζ−,mτ−,−(zm, zm, m)
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]}

+
N∑

m=j+2,j+4···
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− A∗

mζ
(i)
+,mτ

(i)
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−B∗
mζ

(i)
−,mτ

(i)
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N+1ζ+,N+1

[
τ+,+(z, zN , N + 1) + 1

]
,

(A.4)
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f2,AlN(q⊥, z) = ζ+,0
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(A.5)

f3(q⊥, z) = ζ+,0

[
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(A.6)

Appendix B: Electron phonon coupling
function for the AlN-layer
quasi-confined-optical-phonon modes

Similarly, the corresponding functions of fi(q⊥, z) (i =
1, 2, 3) for the coupling between an electron and the

AlN-layer quasi-confined-optical-phonon modes can be de-
rived as,

f1(q⊥, z) = −B∗
0

[
ζ
(i)
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(i)
+,+(−∞, z, 1)
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]}

+
N−1∑
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]
,

(B.1)
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(B.2)
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(B.3)
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